Abstract

The Cell Formation Problem (CFP) is an important optimisation problem in manufacturing. It has been introduced in the Group Technology (GT) and its goal is to group machines and parts processed on them into production cells minimising the movement of parts to other cells for processing and maximising for each cell the loading of its machines with operations on its parts. We consider one of the computationally hardest formulations of this problem – the CFP with a variable number of cells and the grouping efficacy objective, which is a fractional function. The CFP literature contains many heuristic algorithms, but only a small number of exact approaches especially for this formulation. In the current paper, we present an exact branch-and-bound algorithm for the same hard CFP formulation. To linearise the fractional objective function, we apply the Dinkelbach approach. We have been able to solve 24 of the 35 instances from the well known GT benchmark. For the remaining 11 instances, the difference in the grouping efficacy with the best known solutions is less than 2.6%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.