Abstract
We suggest a branch and bound algorithm for solving continuous optimization problems where a (generally nonconvex) objective function is to be minimized under nonconvex inequality constraints which satisfy some specific solvability assumptions. The assumptions hold for some special cases of nonconvex quadratic optimization problems. We show how the algorithm can be applied to the problem of minimizing a nonconvex quadratic function under ball, out-of-ball and linear constraints. The main tool we utilize is the ability to solve in polynomial computation time the minimization of a general quadratic under one Euclidean sphere constraint, namely the so-called trust region subproblem, including the computation of all local minimizers of that problem. Application of the algorithm on sparse source localization problems is presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.