Abstract

We develop a branch and bound algorithm for solving a deterministic single item nonconvex dynamic lot sizing problem with production and inventory capacity constraints. The production cost function is neither convex nor concave. It is a composite function with a fixed setup cost to start the production and a piecewise linear convex variable production cost. The algorithm finds a global optimum solution for the problem after solving a finite number of linear knapsack problems with bounded variables. Computational experience with randomly generated problems suggests that the algorithm solves the dynamic lot sizing problem in a computationally efficient manner both in terms of CPU time and storage requirements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.