Abstract

Motion sickness is a common issue in electric vehicles, significantly impacting passenger comfort. This study aims to develop a functional brain network analysis model by integrating electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) signals to evaluate motion sickness symptoms. During real-world testing with the Feifan F7 series of new energy-electric vehicles from SAIC Motor Corp, data were collected from 32 participants. The EEG signals were divided into four frequency bands: delta-range, theta-range, alpha-range, and beta-range, and brain oxygenation variation was calculated from the fNIRS signals. Functional connectivity between brain regions was measured to construct functional brain network models for motion sickness analysis. A motion sickness detection model was developed using a graph convolutional network (GCN) to integrate EEG and fNIRS data. Our results show significant differences in brain functional connectivity between participants in motion and non-motion sickness states. The model that combined fNIRS data with high-frequency EEG signals achieved the best performance, improving the F1 score by 11.4% compared to using EEG data alone and by 8.2% compared to using fNIRS data alone. These results highlight the effectiveness of integrating EEG and fNIRS signals using GCN for motion sickness detection. They demonstrate the model’s superiority over single-modality approaches, showcasing its potential for real-world applications in electric vehicles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.