Abstract
Despite the common use of one-handed lifting techniques for activities of daily living, these techniques have received little attention in the biomechanics literature. The braced arm-to-thigh technique (BATT) is a one-handed lifting method in which the dominant hand picks up objects, while the free hand braces the trunk on the ipsilateral thigh. The aim of this study was to compare the BATT to two-handed or unsupported one-handed lifting techniques with loads of 2 and 10 kg, by evaluating trunk motion and spine loading at L4/L5. Twenty healthy participants (30–70 years old) matched in age and sex to 18 participants with low back pain were recruited to the study. A three-axis load cell secured to the distal anterior thigh measured the bracing forces applied by the hand. The OpenSim Lifting Full-Body model was used to estimate trunk kinematics and spinal loading at L4/L5. Linear mixed-effects models were developed to compare trunk angles and L4/L5 moments and forces between lifting techniques. Trunk flexion angles were significantly reduced for the BATT lift compared to one-handed and two-handed stoop lifts (9–20%). However, the BATT also increased asymmetric trunk kinematics and moments at L4/L5. The BATT produced significantly lower moments (28–38%), and compressive (25–32%) and antero-posterior shear (25–45%) forces at L4/L5, compared to unsupported lifting techniques. Bracing the hand on the thigh to support the trunk can substantially reduce low back loading during lifting tasks of 2 to 10 kg.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.