Abstract

A constitutive model for describing the stress–strain behaviour of granular soils subjected to cyclic loading is presented. The model is formulated using bounding surface theory within a critical state framework. A single set of material parameters is introduced for the complete characterization of the constitutive model. The shape of the bounding surface is based on experimental observations of undrained stress paths for loose samples. A mapping rule which passes through stress reversal points is introduced to depict the stress–strain behaviour during unloading and reloading. The effect of particle crushing is considered through a modified critical state line. Essential features of the model are validated using several experimental data from the literature. Both drained and undrained loading conditions are considered. The characteristic features of behaviour in granular soils subjected to cyclic loading are captured. Copyright © 2005 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.