Abstract
This article is devoted to the study of the existence of solutions as well as the existence and uniqueness of solutions to a boundary-value problem on the half-line for higher-order nonlinear ordinary differential equations. An existence result is obtained by the use of the Schauder–Tikhonov theorem. Furthermore, an existence and uniqueness criterion is established using the Banach contraction principle. These two results are applied, in particular, to the specific class of higher-order nonlinear ordinary differential equations of Emden–Fowler type and to the special case of higher-order linear ordinary differential equations, respectively. Moreover, some (general or specific) examples demonstrating the applicability of our results are given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society of Edinburgh: Section A Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.