Abstract

Constructing a well-posed variational principle is a non-trivial issue in general relativity. For spacelike and timelike boundaries, one knows that the addition of the Gibbons-Hawking-York (GHY) counter-term will make the variational principle well-defined. This result, however, does not directly generalize to null boundaries on which the 3-metric becomes degenerate. In this work, we address the following question: What is the counter-term that may be added on a null boundary to make the variational principle well-defined? We propose the boundary integral of $2 \sqrt{-g} \left( \Theta+\kappa \right)$ as an appropriate counter-term for a null boundary. We also conduct a preliminary analysis of the variations of the metric on the null boundary and conclude that isolating the degrees of freedom that may be fixed for a well-posed variational principle requires a deeper investigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.