Abstract

We consider the linearized scalar potential formulation of the magnetostatic field problem in this paper. Our approach involves a reformulation of the continuous problem as a parametric boundary problem. By the introduction of a spherical interface and the use of spherical harmonics, the infinite boundary conditions can also be satisfied in the parametric framework. That is the field in the exterior of a sphere is expanded in a ‘harmonic series’ of eigenfunctions for the exterior harmonic problem. The approach is essentially a finite element method coupled with a spectral method via a boundary parametric procedure. The reformulated problem is discretized by finite element techniques which leads to a discrete parametric problem which can be solved by well conditioned iteration involving only the solution of decoupled Neumann type elliptic finite element systems and L 2 projection onto subspaces of spherical harmonics. Error and stability estimates given show exponential convergence in the degree of the spherical harmonics and optimal order convergence with respect to the finite element approximation for the resulting fields in L 2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call