Abstract
A min-max principle for elastic solids, expressed in terms of the unknown boundary displacements and tractions, is presented. It is shown that its Euler-Lagrange equations coincide with the classical boundary integral equations for displacements and for tractions. This principle constitutes a suitable starting point for a symmetric sign-definite formulation of the boundary element method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.