Abstract
This paper considers the motion of a liquid droplet on a solid surface. When capillary relaxation is much faster than the motion of the contact line, the fluid geometry and its dynamical evolution can be characterized in terms of the contact line alone. This problem can be cast in terms of boundary integral equations involving a Dirichlet–Neumann map coupled to a volume conservation constraint. A computational method for this formulation is described which has two principal advantages over approaches which track the entire free surface: (1) only the curve which describes the contact line is computed and (2) the resulting method exhibits only mild numerical stiffness, obviating the need for implicit timestepping. Effects of both capillary and body forces are considered. Computational examples include surface inhomogeneities, topological transitions and cusp formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.