Abstract

An incoming elastodynamic wave impinges on an elastic obstacle is embedded in an infinite elastic medium. The objective of the paper is to examine the subsequent elastic fields scattered by and transmitted into the elastic obstacle. By applying a boundary-field equation method, we are able to formulate a nonlocal boundary problem (NBP) in the Laplace transformed domain, using the field equations inside the obstacle and boundary integral equations in the exterior elastic medium. Existence, uniqueness and stability of the solutions to the NBP are established in Sobolev spaces for two different integral representations. The corresponding results in the time domain are obtained. The stability bounds are translated into time domain estimates that can serve as the starting point for a numerical discretization based on Convolution Quadrature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.