Abstract

A boundary element method is used to simulate the unsteady motion of a sphere falling under gravity along the centreline of a cylindrical tube containing a viscoelastic fluid. The fluid is modelled by the upper-convected Maxwell constitutive equation. Results show that the viscoelasticity of the liquid leads to a damped oscillation in sphere velocity about its terminal value. The maximum sphere velocity, which occurs in the first overshoot, is approximately proportional to the square root of the Weissenberg number when the ratio of the sphere radius to the tube radius is sufficiently small. Particular attention is also paid to the wall effects. It is shown that a closer wall reduces the oscillatory amplitude of the sphere velocity but increases its frequency. The results suggest that the falling-ball technique, which is now widely used for viscosity measurement, might also be used for the determination of a relaxation time for a viscoelastic fluid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.