Abstract

AbstractA boundary integral formulation is presented for the detection of flaws in planar structural members from the displacement measurements given at some boundary locations and the applied loading. Such inverse problems usually start with an initial guess for the flaw location and size and proceed towards the final configuration in a sequence of iterative steps. A finite element formulation will require a remeshing of the object corresponding to the revised flaw configuration in each iteration making the procedure computationally expensive and cumbersome. No such remeshing is required for the boundary element approach. The inverse problem is written as an optimization problem with the objective function being the sum of the squares of the differences between the measured displacements and the computed displacements for the assumed flaw configuration. The geometric condition that the flaw lies within the domain of the object is imposed using the internal penalty function approach in which the objective function is augmented by the constraint using a penalty parameter. A first‐order regularization procedure is also implemented to modify the objective function in order to minimize the numerical fluctuations that may be caused in the numerical procedure due to errors in the experimental measurements for displacements. The flaw configuration is defined in terms of geometric parameters and the sensitivities with respect to these parameters are obtained in the boundary element framework using the implicit differentiation approach. A series of numerical examples involving the detection of circular and elliptical flaws of various sizes and orientations are solved using the present approach. Good predictions of the flaw shape and location are obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.