Abstract

AbstractBased on the variable density method, this article proposes a boundary density evolutionary topology optimization method. The method uses a material interpolation model without penalization. Combined with the density grading filtering method, an optimal topology with only 0/1 cells can be obtained. Compared with the solid isotropic microstructures with penalization method (SIMP), no penalty factor is required in the material interpolation model; compared with the evolutionary structural optimization method (ESO), intermediate‐density elements are allowed in the optimization process, but the concept of gradually removing the low‐utilization materials near the boundary in the ESO method is retained. After the optimal result is obtained, the structural boundary element is processed by the level set of nodal strain energy, and the optimization result with smooth boundaries similar to the level set method (LSM) can be obtained. The proposed method has the superiority of the variable density method, and it also combines the advantages of the evolutionary method and the level set method, so which is named as boundary density evolution (BDE) method. The four static and one dynamic optimization examples illustrate the stability and efficiency of the proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call