Abstract
The paper deals with studying a connection of the Littlewood--Offord problem with estimating the concentration functions of some symmetric infinitely divisible distributions. It is shown that the values at zero of the concentration functions of weighted sums of i.i.d. random variables may be estimated by the values at zero of the concentration functions of symmetric infinitely divisible distributions with the L\'evy spectral measures which are multiples of the sum of delta-measures at $\pm$weights involved in constructing the weighted sums.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.