Abstract

We continue developing the theory of nilpotent symplectic alternating algebras. The algebras of upper bound nilpotent class, that we call maximal algebras, have been introduced and well studied. In this paper, we continue with the external case problem of algebras of minimal nilpotent class. We show the existence of a subclass of algebras over a field [Formula: see text] that is of certain lower bound class that depends on the dimension only. This suggests a minimal bound for the class of nilpotent algebras of dimension [Formula: see text] of rank [Formula: see text] over any field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.