Abstract
Building detection from high-resolution synthetic aperture radar (SAR) image is an essential issue for many SAR applications in urban areas. In this letter, we propose a novel bottom-up/top-down hybrid algorithm for model-based building detection from single very high resolution (VHR) SAR image. First, the building model is generated and described by a set of extraction criteria, which restrict the spatial layout of a building and its primitive features. Specifically, the rectangles of different intensity levels are extracted from the SAR image as primitive features. Then the bottom-up stage proposes building candidates composed by extracted rectangles, and the top-down step predicts building candidates composed by weak features omitted in the primitive extraction. After that, all candidates are verified through false alarm detection. Under this framework, the detection performances can be greatly improved especially in dense built-up areas. The effectiveness of the proposed method is verified by experimental results obtained from real VHR SAR images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.