Abstract

In this work, we take advantage of the rod-like structure of electrosterically stabilized nanocrystalline cellulose (ENCC, with a width of about 7 nm and a length of about 130 nm), which has dicarboxylated cellulose (DCC) chains protruding from both ends, providing electrosterical stability for ENCC particles, to chemically end-to-end assemble these particles into nanocellulose fibers. ENCC with shorter DCC chains can be obtained by a mild hydrolysis of ENCC with HCl, and subsequently the hydrolyzed ENCC (HENCC, with a width of about 6 nm and a length of about 120 nm) is suitable to be assembled into high aspect ratio nanofibers by chemically cross-linking HENCC from one end to another. Two sets of HENCC were prepared by carbodiimide-mediated formation of an alkyne and an azide derivative, respectively. Cross-linking these two sets of HENCC was performed by a click reaction. HENCCs were also end-to-end cross-linked by a bioconjugation reaction, with a diamine. From atomic force microscopy (AFM) images, about ten HENCC nanoparticles were cross-linked and formed high aspect ratio nanofibers with a width of about 6 nm and a length of more than 1 μm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.