Abstract

The high generalization ability of support vector machines (SVMs) has been shown in many practical applications, however, they are considerably slower in test phase than other learning approaches due to the possibly big number of support vectors comprised in their solution. In this letter, we describe a method to reduce such number of support vectors. The reduction process iteratively selects two nearest support vectors belonging to the same class and replaces them by a newly constructed one. Through the analysis of relation between vectors in input and feature spaces, we present the construction of the new vectors that requires to find the unique maximum point of a one-variable function on (0,1), not to minimize a function of many variables with local minima in previous reduced set methods. Experimental results on real life dataset show that the proposed method is effective in reducing number of support vectors and preserving machine's generalization performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.