Abstract

Bus transport has been an important mode taking up a significant share of urban travel demand and thus the corresponding impacts on the environment are of great concerns. Use of driving cycles to evaluate the environmental impacts of buses has attracted much attention in recent years worldwide. The franchised bus service is currently playing important roles in the public transport system in Hong Kong; however, there is no driving cycle developed specifically for them. A set of bus driving cycle was therefore developed using a bottom-up approach where driving data on the bus network with mixed characteristics were collected. Using the Ward's method for clustering, the collected data were then categorized into three clusters representing distinct franchised bus route patterns in Hong Kong. Driving cycles were then developed for each route pattern including (i) congested urban routes with closely spaced bus stops and traffic junctions; (ii) inter-district routes containing a number of stop-and-go activities and a significant portion of smoother high speed driving; and (iii) early morning express routes and mid-night routes connecting remote residential areas and urban areas. These cycles highlighted the unique low-speed and aggressive driving characteristics of bus transport in Hong Kong with frequent stop-and-go activities. The findings from this study would definitely be helpful in assessing the exhaust emissions, fuel consumptions as well as energy consumptions of bus transport. The bottom-up clustering approach adopted in this study would also be useful in identifying specific driving patterns based on vehicle speed trip data with mixed driving characteristics. It is believed that this approach is especially suitable for assessing fixed route public transport modes with mixed driving characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.