Abstract

Increasing demands on the accuracy and thematic resolution of vegetation community maps from remote sensing imagery has created a need for novel image analysis techniques. We present a case study for vegetation mapping of the Lake Tahoe Basin which fulfills many of the requirements of the Federal Geographic Data Committee base-level mapping (FGDC, 1997) by using hyperspatial Ikonos imagery analyzed with a fusion of pixel-based species classification, automated image segmentation techniques to define vegetation patch boundaries, and vegetation community classification using querying of the species classification raster based on existing and novel rulesets. This technique led to accurate FGDC physiognomic classes. Floristic classes such as dominance type remain somewhat problematic due to inaccurate species classification results. Vegetation, tree and shrub cover estimates (FGDC required attributes) were determined accurately. We discuss strategies and challenges to vegetation community mapping in the context of standards currently being advanced for thematic attributes and accuracy requirements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.