Abstract

AbstractSmall organic photothermal agents (SOPTAs) that absorb in the second near‐infrared (NIR‐II, 1000–1700 nm) window are highly desirable in photothermal therapy for their good biocompatibility and deeper tissue penetration. However, the design of NIR‐II absorbing SOPTAs remains a great challenge. Herein, we report that molecular engineering of BF2 complex via strengthening the donor‐acceptor conjugation and increasing the intramolecular motions is an efficient strategy to achieve NIR‐II absorbing SOPTAs with high photothermal performance. Based on this strategy, a BF2 complex, BAF4, was designed and synthesized. BAF4 exhibits an intense absorption maximum at 1000 nm and negligible fluorescence. Notably, the nanoparticles of BAF4 achieve a high photothermal conversion efficiency value of 80 % under 1064 nm laser irradiation (0.75 W cm−2). In vitro and in vivo studies reveal the great potential of BAF4 nanoparticles in photoacoustic imaging‐guided photothermal therapy in the NIR‐II window.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.