Abstract

The isotopically light N2O produced by microbial activity is thought to be balanced by the return of heavy stratospheric nitrous oxide. The Yung and Miller [1997] method that first explained these trends yields photolytic fractionation factors ∼half those observed by experiment or predicted quantum mechanically, however. To address these issues, we present here a Born‐Oppenheimer photolysis model that uses only commonly available spectroscopic data. The predicted fractionations quantitatively reproduce laboratory data, and have been incorporated into zonally averaged atmospheric simulations. Like McLinden et al. [2003], who employ a three‐dimensional chemical transport model with cross sections scaled to match laboratory data, we find excellent agreement between predictions and stratospheric measurements; additional processes that contribute to the mass independent anomaly in N2O can only account for a fraction of its global budget.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.