Abstract
Many microarray experiments have factorial designs, but there are few statistical methods developed explicitly to handle the factorial analysis in these experiments. We propose a bootstrap-based non-parametric ANOVA (NANOVA) method and a gene classification algorithm to classify genes into different groups according to the factor effects. The proposed method encompasses one-way and two-way models, as well as balanced and unbalanced experimental designs. False discovery rate (FDR) estimation is embedded in the procedure, and the method is robust to outliers. The gene classification algorithm is based on a series of NANOVA tests. The false discovery rate of each test is carefully controlled. Gene expression pattern in each group is modeled by a different ANOVA structure. We demonstrate the performance of NANOVA using simulated and microarray data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.