Abstract
In this paper, a bootstrap algorithm for a reduced rank vector autoregressive (VAR) model which also includes stationary regressors, is analyzed. It is shown that the bootstrap distribution for estimating the rank converges to the distribution derived from the usual asymptotic framework. Because the asymptotic distribution will typically depend on unknown parameters, bootstrap distributions are of considerable interest in this context. The result of an application and some Monte Carlo experiments are also presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.