Abstract

We discuss receiver operating characteristic (ROC) curve and the area under the ROC curve (AUC) for binary classification problems in clinical fields. We propose a statistical method for combining multiple feature variables, based on a boosting algorithm for maximization of the AUC. In this iterative procedure, various simple classifiers that consist of the feature variables are combined flexibly into a single strong classifier. We consider a regularization to prevent overfitting to data in the algorithm using a penalty term for nonsmoothness. This regularization method not only improves the classification performance but also helps us to get a clearer understanding about how each feature variable is related to the binary outcome variable. We demonstrate the usefulness of score plots constructed componentwise by the boosting method. We describe two simulation studies and a real data analysis in order to illustrate the utility of our method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.