Abstract

Beyond identifying genetic variants, we introduce a set of Boolean relations, which allows for a comprehensive classification of the relations of every pair of variants by taking all minimal alignments into account. We present an efficient algorithm to compute these relations, including a novel way of efficiently computing all minimal alignments within the best theoretical complexity bounds. We show that these relations are common, and many non-trivial, for variants of the CFTR gene in dbSNP. Ultimately, we present an approach for the storing and indexing of variants in the context of a database that enables efficient querying for all these relations. A Python implementation is available at https://github.com/mutalyzer/algebra/tree/v0.2.0 as well as an interface at https://mutalyzer.nl/algebra.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.