Abstract
Promoting osteogenic differentiation and inhibiting osteoclast formation remain significant challenges in the treatment of osteoporosis. With the growing understanding of osteoporosis, increasing literature has highlighted the regulatory role of m6A methylation in this condition. However, there is currently no reliable method to stably regulate cellular m6A methylation levels. Here, we report a novel approach utilizing alendronate (aln)-modified mesoporous silica nanoparticles (MSNs) to deliver sodium bicarbonate and piR7472, modulating cellular behavior. Our experimental results demonstrate that Aln modification enables the nanoparticles to stably target hydroxyapatite, thereby accumulating in osteoporotic regions. Sodium bicarbonate suppresses osteoclastogenesis, while piR7472 enhances m6A methylation, promoting osteogenic differentiation of bone marrow stromal cells (BMSCs). Computed tomography (CT) and hematoxylin and eosin (HE) staining showed that after 2 weeks of treatment with MSNs-Na@piR7472, cortical bone thickened, trabecular bone density increased, collagen fiber thickness improved, and both the number and staining area of osteoclasts were significantly reduced. These findings indicate a marked improvement in osteoporosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.