Abstract
The adsorption of cyclopentene (c-C 5H 8) on Ni(1 1 1) was studied using DFT and semiempirical calculations. Preferred site and geometry calculations were carried out considering a Ni(1 1 1) surface and a unit cell of 64-atoms. The tetrahedral threefold hollow position was identified as the most favorable site, with a surface-molecule minimum distance of 1.83 Å. A bending structure is adopted when the molecule is adsorbed where the carbon atoms of the double bond are closer to the surface forming an angle of 160° among non-equivalents carbon atoms. The metal surface was represented by a two-dimensional slab with an overlayer of c-C 5H 8/Ni of 1/9 ratio. We also computed the density of states (DOS) and the crystal orbital overlap populations (COOP) corresponding to C C, C Ni, C H, and Ni Ni bonds. We found that both Ni Ni bonds interacting with the ring, and the C C bond are weakened after adsorption, this last bond is linked significantly to the surface. The hydrogen atoms belonging to the saturated carbon atoms also participate in the adsorbate–surface bonding. The main interactions include the 4s, 3p z and 5 d z 2 bands of nickel and 2p z bands of the carbon atoms of the double bond.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.