Abstract

This paper deals with the numerical simulation of initiation and propagation of mixed mode fracture in rocks. A bond-level energy-based peridynamic model is developed by introducing a dilatation function to capture both volumetric and deviatoric deformations. We proceed to define the nonlocal stresses to obtain the isotropic and deviatoric forces commensurate with the deformations. We then come up with a new failure model to link computational peridynamics with some phenomenological failure criteria, which is highly relevant for both brittle and quasi-brittle rocks. Finally, several numerical examples of mixed-mode fractures are presented to show the performance of our model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.