Abstract

Phantoms of different sizes, as indicated by several studies, have a significant impact on the accuracy of dose calculations. Therefore, it is necessary to establish a body-size-dependent series of Chinese standing adult phantoms to improve the accuracy of radiation dosimetry. In this study, the Chinese reference polygon-mesh phantoms have been refined and a method for automatically constructing lymph nodes in a mesh phantom has been proposed. Then, based on the refined phantoms, this study has developed 42 anthropometric standing adult computational phantoms, 21 models for each gender, with a height range of 145–185 cm and weight as a function of body mass index corresponding to healthy, overweight and obese. The parameters were extracted from the National Occupational Health Standards (GBZ) document of the People’s Republic of China, which covers more than 90% of the Chinese population. For a given body height and mass, phantoms are scaled in proportion to a factor reflecting the change of adipose tissue and the internal organs. The remainder is adjusted manually to match the target parameters. In addition, the constructed body-size-specific phantoms have been implemented in the in-house THUDose Monte Carlo code to calculate the dose coefficients (DCs) for external photon exposures in the antero-posterior, postero-anterior and right lateral geometries. The results showed that organ DCs varied significantly with body size at low energies () and high energies () due to the differences in anatomy. Organ DC differences between a phantom of a given size and a reference phantom vary by up to 40% for the same height and up to 400% for the whole phantom. The influence of body size differences on the DCs demonstrates that the body-size-dependent Chinese adult phantoms hold great promise for a wide range of applications in radiation dosimetry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.