Abstract

Bilevel-programming techniques are developed to handle decentralized problems with two-level decision makers, which are leaders and followers, who may have more than one objective to achieve. This paper proposes a λ-cut and goal-programming-based algorithm to solve fuzzy-linear multiple-objective bilevel (FLMOB) decision problems. First, based on the definition of a distance measure between two fuzzy vectors using λ-cut, a fuzzy-linear bilevel goal (FLBG) model is formatted, and related theorems are proved. Then, using a λ-cut for fuzzy coefficients and a goal-programming strategy for multiple objectives, a λ-cut and goal-programming-based algorithm to solve FLMOB decision problems is presented. A case study for a newsboy problem is adopted to illustrate the application and executing procedure of this algorithm. Finally, experiments are carried out to discuss and analyze the performance of this algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.