Abstract
We present an ultra-low-power Bluetooth low-energy (BLE) transceiver (TRX) for the Internet of Things (IoT) optimized for digital 28-nm CMOS. A transmitter (TX) employs an all-digital phase-locked loop (ADPLL) with a switched current-source digitally controlled oscillator (DCO) featuring low frequency pushing, and class-E/F2 digital power amplifier (PA), featuring high efficiency. Low 1/ $f$ DCO noise allows the ADPLL to shut down after acquiring lock. The receiver operates in discrete time at high sampling rate (~10 Gsamples/s) with intermediate frequency placed beyond 1/ $f$ noise corner of MOS devices. New multistage multirate charge-sharing bandpass filters are adapted to achieve high out-of-band linearity, low noise, and low power consumption. An integrated on-chip matching network serves to both PA and low-noise transconductance amplifier, thus allowing a 1-pin direct antenna connection with no external band-selection filters. The TRX consumes 2.75 mW on the RX side and 3.7 mW on the TX side when delivering 0 dBm in BLE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.