Abstract

The anatomical basis of the vertebrate blood-brain barrier is a series of tight junctions between endothelial cells of capillaries in the central nervous system. Over two decades ago, tight junctions were also proposed as the basis of the blood-brain barrier in insects. Currently there is a growing understanding that septate junctions might possess barrier properties in various invertebrate epithelial cells. We now examine these two views by studying the blood-brain barrier properties of the early postembryonic larva of a dipteran fly (Delia platura) by transmission electron microscopy. Newly hatched larvae possess a functioning blood-brain barrier that excludes the extracellular tracer, ionic lanthanum. This barrier is intact throughout the second instar stage as well. The ultrastructural correlate of this barrier is a series of extensive septate junctions that pervade the intercellular space between adjacent perineurial cells. No tight junctions were located in either nerve, glial or perineurial cell layers. We suggest that the overall barrier might involve septate junctions within extensive, meandering intercellular clefts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.