Abstract

ContextThere is no rapid and cost effective tool that can be implemented as a front-line screening tool for Alzheimer's disease (AD) at the population level.ObjectiveTo generate and cross-validate a blood-based screener for AD that yields acceptable accuracy across both serum and plasma.Design, Setting, ParticipantsAnalysis of serum biomarker proteins were conducted on 197 Alzheimer's disease (AD) participants and 199 control participants from the Texas Alzheimer's Research Consortium (TARC) with further analysis conducted on plasma proteins from 112 AD and 52 control participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI). The full algorithm was derived from a biomarker risk score, clinical lab (glucose, triglycerides, total cholesterol, homocysteine), and demographic (age, gender, education, APOE*E4 status) data.Major Outcome MeasuresAlzheimer's disease.Results11 proteins met our criteria and were utilized for the biomarker risk score. The random forest (RF) biomarker risk score from the TARC serum samples (training set) yielded adequate accuracy in the ADNI plasma sample (training set) (AUC = 0.70, sensitivity (SN) = 0.54 and specificity (SP) = 0.78), which was below that obtained from ADNI cerebral spinal fluid (CSF) analyses (t-tau/Aβ ratio AUC = 0.92). However, the full algorithm yielded excellent accuracy (AUC = 0.88, SN = 0.75, and SP = 0.91). The likelihood ratio of having AD based on a positive test finding (LR+) = 7.03 (SE = 1.17; 95% CI = 4.49–14.47), the likelihood ratio of not having AD based on the algorithm (LR−) = 3.55 (SE = 1.15; 2.22–5.71), and the odds ratio of AD were calculated in the ADNI cohort (OR) = 28.70 (1.55; 95% CI = 11.86–69.47).ConclusionsIt is possible to create a blood-based screening algorithm that works across both serum and plasma that provides a comparable screening accuracy to that obtained from CSF analyses.

Highlights

  • Alzheimer’s disease (AD) is a devastating disease affecting millions of people worldwide

  • The random forest (RF) biomarker risk score from the Texas Alzheimer’s Research Consortium (TARC) serum samples yielded adequate accuracy in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) plasma sample (AUC = 0.70, sensitivity (SN) = 0.54 and specificity (SP) = 0.78), which was below that obtained from ADNI cerebral spinal fluid (CSF) analyses (t-tau/amyloid b (Ab) ratio AUC = 0.92)

  • The likelihood ratio of having AD based on a positive test finding (LR+) = 7.03 (SE = 1.17; 95% CI = 4.49–14.47), the likelihood ratio of not having AD based on the algorithm (LR2) = 3.55 (SE = 1.15; 2.22–5.71), and the odds ratio of AD were calculated in the ADNI cohort (OR) = 28.70 (1.55; 95% CI = 11.86–69.47)

Read more

Summary

Introduction

Alzheimer’s disease (AD) is a devastating disease affecting millions of people worldwide. The 2009 U.S Census estimates suggested that there were nearly 40 million Americans age 65 and above with an additional 34 million reaching 65 within 10 years; there are many more world-wide. Given their cost and limited availability, available imaging, clinical, and CSF modalities are not reasonable first-line approaches for screening all elders at risk of having AD or that have concerns about having the disease. The purpose of this study was to generate and cross-validate a blood-based screener for AD that can be incorporated into the existing medical infrastructure with additional assessments (e.g. clinical, imaging, CSF analysis) to confirm those who screen positive

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call