Abstract

NAND flash memory is the major storage media for both mobile storage cards and enterprise Solid-State Drives (SSDs). Log-block-based Flash Translation Layer (FTL) schemes have been widely used to manage NAND flash memory storage systems in industry. In log-block-based FTLs, a few physical blocks called log blocks are used to hold all page updates from a large amount of data blocks. Frequent page updates in log blocks introduce big overhead so log blocks become the system bottleneck. To address this problem, this paper presents BLog , a block-level log-block management scheme for MLC NAND flash memory storage system. In BLog, with block-level management, the update pages of a data block can be collected together and put into the same log block as much as possible; therefore, we can effectively reduce the associativities of log blocks so as to reduce the garbage collection overhead. We also propose a novel partial merge operation strategy called reduced-order merge by which we can effectively postpone the garbage collection of log blocks so as to maximally utilize valid pages and reduce unnecessary erase operations in log blocks. Based on BLog, we design an FTL called BLogFTL for Multi-Level Cell (MLC) NAND flash. We conduct a set of experiments on a real hardware platform. Both representative FTL schemes and the proposed BLogFTL have been implemented in the hardware evaluation board. The experimental results show that our scheme can effectively reduce the garbage collection operations and reduce the system response time compared to the previous log-block-based FTLs for MLC NAND flash.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.