Abstract

With the advancement of smart devices, the operation and communication of smart grids have become increasingly efficient. Many smart devices such as smart meters, smart transformers, and smart grid controllers are already widely used in smart grids. Thus, a series of complex architectures and a series of communication modes have been formed. However, these smart devices will be exposed to various cyber attacks such as distributed denial of service (DDoS) attack and replay attack. This is because they are open and dynamic. Therefore, there are serious security problems in the complex architectures and the communication modes. In this paper, we propose a multi-domain authentication mechanism based on blockchain cooperation to maintain the security of smart devices. In this mechanism, we propose a series of methods and algorithms, which include initialization method based on blockchain cooperative authentication, dynamic change method of intelligent devices and information, cross-domain authentication algorithm, and cross-domain key cooperative algorithm. To demonstrate the security and effectiveness of our proposed mechanism, we analysed its security and conducted a series of simulation experiments. The analysis and simulation experiments show that our proposed approach is secure and effective.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call