Abstract

This study introduces a block triple-relaxation-time (B-TriRT) lattice Boltzmann model designed specifically for simulating melting phenomena within a rectangular cavity subject to intense heating from below, characterized by high Rayleigh (Ra) numbers (Ra=108). Through benchmark testing, it is demonstrated that the proposed B-TriRT approach markedly mitigates numerical diffusion along the phase interface. Furthermore, an examination of the heated region’s placement is conducted, revealing its significant impact on the rate of melting. Notably, findings suggest that optimal melting occurs most rapidly when the heated region is positioned centrally within the cavity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.