Abstract

In this article, a block-centered finite difference method for the distributed-order time-fractional diffusion-wave equation with Neumann boundary condition is introduced and analyzed. The unconditional stability and the global convergence of the scheme are proved rigorously. Some a priori estimates of discrete norms with optimal order of convergence O(Δt1+σ/2+h2+k2+σ2) both for pressure and velocity are established on non-uniform rectangular grids, where Δt,h,k and σ are the step sizes in time, space in x- and y-direction, and distributed order. Moreover, the applicability and accuracy of the scheme are demonstrated by numerical experiments to support our theoretical analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.