Abstract

Recently, estimation of distribution algorithms (EDAs) have gradually attracted a lot of attention and have emerged as a prominent alternative to traditional evolutionary algorithms. In this paper, a block-based EDA using bivariate model is developed to solve combinatorial problems. Instead of generating a set of chromosomes, our approach generates a set of promising blocks using bivariate model and these blocks are reserved in an archive for future use. These blocks will be updated every other k generation. Then, two rules, i.e., AC1 and AC2, are developed to generate a new chromosome by combining the set of selected blocks and rest of genes. This block based approach is very efficient and effective when compared with the traditional EDAs. According to the experimental results, the block based EDA outperforms EDA, GA, ACO and other evolutionary approaches in solving benchmark permutation problems. The block based approach is a new concept and has a very promising result for other applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.