Abstract

ABSTRACTThe simplified spherical harmonics equations are a useful approximation to the stationary neutron transport equation. The eigenvalue problem associated with them is a challenging problem from the computational point of view. In this work, we take advantage of the block structure of the involved matrices to propose the block inverse-free preconditioned Arnoldi method as an efficient method to solve this eigenvalue problem. For the spatial discretization, a continuous Galerkin finite element method implemented with a matrix-free technique is used to keep reasonable memory demands. A multilevel initialization using linear shape functions in the finite element method is proposed to improve the method convergence. This initialization only takes a small percentage of the total computational time. The proposed eigenvalue solver is compared to the standard power iteration method, the Krylov-Schur method and the generalized Davidson method. The numerical results show that it reduces the computational time to solve the eigenvalue problem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call