Abstract

In open nanophotonic structures, the natural modes are so-called quasi-normal modes satisfying an outgoing wave boundary condition. We present a new scheme based on a modal expansion technique, a scattering matrix approach and Bloch modes of periodic structures for determining these quasi-normal modes. As opposed to spatial discretization methods like the finite-difference time-domain method and the finite element method, the present approach satisfies automatically the outgoing wave boundary condition in the propagation direction which represents a significant advantage of our new method. The scheme uses no external excitation and determines the quasi-normal modes as unity eigenvalues of the cavity roundtrip matrix. We demonstrate the method and the quasi-normal modes for two types of two-dimensional photonic crystal structures, and discuss the quasi-normal mode field distributions and Q -factors in relation to the transmission spectra of these structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.