Abstract

Aims. We analyse the relative performance of different photo-z codes in blind applications to ground-based data. Methods. We tested the codes on imaging datasets with different depths and filter coverages and compared the results to large spectroscopic catalogues. The photo-z error behaviour was analysed to select cleaner subsamples with more secure photo-z estimates. We consider Hyperz, BPZ, and the code used in the CADIS, COMBO-17, and HIROCS surveys. Results. The photo-z error estimates of the three codes do not correlate tightly with the accuracy of the photo-z's. While very large errors sometimes indicate a true catastrophic photo-z failure, smaller errors are usually not meaningful. For any given dataset, we find significant differences in redshift accuracy and outlier rates between the different codes when compared to spectroscopic redshifts. However, different codes excel in different regimes. The agreement between different sets of photo-z's is better for the subsample with secure spectroscopic redshifts than for the whole catalogue. Conclusions. Running today's photo-z codes on well-calibrated ground-based data can lead to reasonable accuracy. The actual performance on a given dataset is largely dependent on the template choice and on realistic instrumental response curves. It would be desirable to improve the photo-z error estimation for future applications so as to get a better handle on rejecting objects with grossly inaccurate photo-z's. The secure spectroscopic subsamples commonly used for assessments of photo-z accuracy may be biased toward objects for which the photo-z's are easier to estimate than for a complete flux-limited sample, resulting in very optimistic estimates. (abridged)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.