Abstract
This paper presents a new preprocessing stage that allows for the reliable classification of digital amplitude-phase modulated signals in a practical scenario where: 1) the classifier has no knowledge of the timing (symbol transition epochs) of the received signal; 2) the noise added in the channel is non-Gaussian; and 3) the fading experienced by the signal is frequency selective. The proposed preprocessor, which is based on the Gibbs sampling algorithm, is used to acquire timing information and to estimate the channel state and noise distribution parameters blindly, i.e., without knowledge of the received symbol sequence and the modulation scheme used. With the obtained estimates, in a second processing stage, the signal is then classified by using an appropriate (likelihood- or feature-based) classification algorithm. To quantify the performance of the proposed preprocessor, the probability of correct classification obtained by using the preprocessor with different classification algorithms is presented. It is shown that, by using the proposed preprocessor, modulation classification algorithms can perform well compared with clairvoyant classifiers assumed to be symbol synchronous with the received signal and to have perfect knowledge of the channel state and noise distribution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.