Abstract

Erythrocytes infected with malaria parasites exhibit marked increases in permeability to organic and inorganic solutes. The plasmodial surface anion channel (PSAC), an unusual voltage-dependent ion channel induced on the host membrane after infection, may play a central role in these permeability changes. Here, we identified a functional PSAC mutant through in vitro selection with blasticidin S. Resistance to blasticidin S was generated during culture and correlated with significant reductions in permeability to multiple solutes, consistent with uptake via a common pathway. Single channel recordings revealed marked changes in PSAC gating with the addition of a subconductance state not present in wild-type channels. The channel's selectivity profile and pharmacology also were significantly altered. Eventual loss of the mutant phenotype upon removal of selective pressure and slower growth of mutant parasites suggest that PSAC serves an important role in intracellular parasite survival. These findings provide solid evidence for the uptake of diverse solutes via PSAC and implicate one or more parasite genes in expression of this channel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.