Abstract

A shock spectrum procedure is developed to estimate the peak displacement response of linear flexible rotor-bearing systems subjected to a step change in unbalance (i.e., a blade loss). A progressive and a retrograde response spectrum are established. These blade loss response spectra are expressed in a unique non-dimensional form and are functions of the modal damping ratio and the ratio of rotor spin speed to modal damped whirl speed. Modal decomposition using complex modes is utilized to make use of the unique feature of the spectra for the calculation of the peak blade loss displacement response of the rotor system. The procedure is applied to three example systems using several modal superposition strategies. The results of each are compared to true peak displacements obtained by a separate transient response program.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call