Abstract

ABSTRACTIn reliability and survival analysis the inverse Weibull distribution has been used quite extensively as a heavy tailed distribution with a non-monotone hazard function. Recently a bivariate inverse Weibull (BIW) distribution has been introduced in the literature, where the marginals have inverse Weibull distributions and it has a singular component. Due to this reason this model cannot be used when there are no ties in the data. In this paper we have introduced an absolutely continuous bivariate inverse Weibull (ACBIW) distribution omitting the singular component from the BIW distribution. A natural application of this model can be seen in the analysis of dependent complementary risks data. We discuss different properties of this model and also address the inferential issues both from the classical and Bayesian approaches. In the classical approach, the maximum likelihood estimators cannot be obtained explicitly and we propose to use the expectation maximization algorithm based on the missing value principle. In the Bayesian analysis, we use a very flexible prior on the unknown model parameters and obtain the Bayes estimates and the associated credible intervals using importance sampling technique. Simulation experiments are performed to see the effectiveness of the proposed methods and two data sets have been analyzed to see how the proposed methods and the model work in practice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call