Abstract
There are no gold standard methods that perform well in every situation when it comes to the analysis of multiple time series of counts. In this paper, we consider a positively correlated bivariate time series of counts and propose a parameter-driven Poisson regression model for its analysis. In our proposed model, we employ a latent autoregressive process, AR(p) to accommodate the temporal correlations in the two series. We compute the familiar maximum likelihood estimators of the model parameters and their standard errors via a Bayesian data cloning approach. We apply the model to the analysis of a bivariate time series arising from asthma-related visits to emergency rooms across the Canadian province of Ontario.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.