Abstract
Diffeomorphic registration is a widely used technique for finding a smooth and invertible transformation between two coordinate systems, which are measured using template and reference images. The point-wise volume-preserving constraint det(∇φ(x))=1 is effective in some cases, but may be too restrictive in others, especially when local deformations are relatively large. This can result in poor matching when enforcing large local deformations. In this paper, we propose a new bi-variant diffeomorphic image registration model that introduces a soft constraint on the Jacobian equation det(∇φ(x))=f(x)>0. This allows local deformations to shrink and grow within a flexible range 0<κm<det(∇φ(x))<κM. The Jacobian determinant of transformation is explicitly controlled by optimizing the relaxation function f(x). To prevent deformation folding and improve the smoothness of the transformation, a positive constraint is imposed on the optimization of the relaxation function f(x), and a regularizer is used to ensure the smoothness of f(x). Furthermore, the positivity constraint ensures that f(x) is as close to one as possible, which helps to achieve a volume-preserving transformation on average. We also analyze the existence of the minimizer for the variational model and propose a penalty-splitting algorithm with a multilevel strategy to solve this model. Numerical experiments demonstrate the convergence of the proposed algorithm and show that the positivity constraint can effectively control the range of relative volume without compromising the accuracy of the registration. Moreover, the proposed model generates diffeomorphic maps for large local deformations and outperforms several existing registration models in terms of performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.